Информация, необх «Информ	овки программно орма «Pulsar-APF	

Содержание

1. Устано	вка Платформы	3
1.1. Обц	цие сведения о Платформе	3
1.1.1.	Требования к администратору	3
1.1.2.	Аппаратные требования к серверам Платформы	3
1.1.3.	Требования к ПО и сетевым доступам	5
1.1.4.	Логическая схема работы	7
1.1.5.	Сетевая связность	8
1.2. Под	готовка к запуску APPS	10
1.2.1.	Установка Docker	10
1.2.2.	Примеры установки Docker на разные системы	11
1.3. Уста	эновка	14
1.3.1.	Общие сведения об установке	14
1.3.2.	Подключение сетевого каталога	14
1.3.3.	Установка APPS	16
1.4. Запу	уск APPS	17
1.4.1.	Общие сведения	17
1.4.2.	Запуск в режиме одного сервера	18
2. Получе	ение доступа к функциям Платформы	22

1. Установка Платформы

1.1.Общие сведения о Платформе

1.1.1. Требования к администратору

Основные требования

Для полноценной установки, обновления и администрирования программного обеспечения «Информационная платформа «Pulsar-APPS+» (далее – Платформа, APPS), а также сопутствующих инфраструктурных компонентов, сотрудник должен обладать опытом работы со следующими компонентами и ПО Linux:

- Bash для написания скриптов автоматизации и выполнения команд в оболочке;
- SSH для безопасного удалённого доступа к серверам;
- Docker для работы с контейнерами приложений;
- Docker Compose для оркестрации многоконтейнерных приложений;
- Консольные редакторы: Vim, Nano для редактирования конфигурационных файлов в терминале;
- Базовое понимание сетевых технологий для настройки и диагностики сетевых подключений.

Дополнительные компетенции

Наличие опыта работы с нижеперечисленными технологиями является желательным:

- Ansible для автоматизации конфигурирования и управления инфраструктурой;
- PostgreSQL для работы с реляционными базами данных;
- Redis как хранилище кэшированных данных и очередей;
- Elasticsearch и стек ELK (Elasticsearch, Logstash, Kibana) для централизованного сбора, анализа и визуализации логов;
- Каfkа для работы с распределёнными потоками сообщений;
- Высокая доступность (НА) для обеспечения отказоустойчивости сервисов.

1.1.2. Аппаратные требования к серверам Платформы

Для успешной работы приложений Платформы необходимо соблюдать определенные аппаратные требования, которые зависят от выбранного режима развертывания: односерверный или кластерный. Ниже представлены рекомендуемые конфигурации для различных сценариев использования.

Запуск в режиме одного сервера

В односерверном режиме APPS и ELK разворачиваются на одном физическом или виртуальном сервере. Этот вариант подходит для небольших нагрузок, когда количество подключенных пользователей не превышает 200 человек.

Компонент	CPU (Core)	RAM	Диск	OS
APPS + ELK	10 ядер (частота от 2.2 GHz)	32 ГБ	500 ГБ	Debian, Ubuntu, Astra Linux,
	,			РЕД ОС

Примечание. Режим односерверной установки удобен для тестирования и для небольших рабочих сред, но не обеспечивает отказоустойчивость. При увеличении числа пользователей или нагрузки рекомендуется перейти на кластерную архитектуру.

Запуск в режиме кластера

Кластерная конфигурация обеспечивает высокую доступность и масштабируемость системы. Для отказоустойчивости требуется минимум три сервера APPS. Если ожидается высокая нагрузка или требуется повышенная надежность, рекомендуется вынести кластер Redis на отдельные серверы.

Требования к серверам APPS

Компонент	CPU (Core)	RAM	Диск	OS
Сервер APPS	6 ядер (частота	16 ГБ	100 ГБ	Debian, Ubuntu,
	от 2.2 GHz)			Astra Linux,
	·			РЕД ОС

ВНИМАНИЕ! Минимальное количество серверов APPS для отказоустойчивости – три. Это гарантирует работоспособность системы даже при выходе из строя одного из узлов.

Вынос Redis на отдельные серверы

Для повышения производительности и отказоустойчивости рекомендуется вынести кластер Redis на отдельные серверы. Количество серверов Redis должно быть не менее трех и не более шести.

Компонент	CPU (Core)	RAM	Диск	OS
Сервер Redis	6 ядер (частота	16 ГБ	100 ГБ	Debian, Ubuntu,
	от 2.2 GHz)			Astra Linux,
				РЕД ОС

Выделение Redis на отдельные серверы снижает нагрузку на основные серверы APPS и позволяет эффективнее использовать ресурсы системы.

Требования к серверу ELK

Для сбора, анализа и визуализации логов используется стек ELK, который может быть размещен либо на том же сервере, что и APPS (в односерверном режиме), либо на отдельном сервере (в кластерном режиме).

Компонент	CPU (Core)	RAM	Диск	OS	
Сервер ELK	6 ядер (частота	16 ГБ	500 ГБ	Debian, Ubuntu,	
	от 2.2 GHz)			Astra Linux,	
				РЕД ОС	

ВНИМАНИЕ! Объем дискового пространства для сервера ELK зависит от объема собираемых логов и установленных политик хранения данных. Рекомендуется регулярно

мониторить использование дискового пространства и при необходимости увеличивать его размер.

Дополнительные рекомендации

- **Частота процессора:** Минимальная частота процессора должна составлять 2.2 GHz для обеспечения достаточной производительности.
- **Хранилище:** Используйте SSD-накопители для повышения скорости работы системы, особенно для баз данных и индексов ELK.
- **Масштабирование:** При росте нагрузки можно горизонтально масштабировать систему, добавляя новые серверы APPS или увеличивая мощность существующих узлов.
- Резервное копирование: Обеспечьте регулярное резервное копирование данных для предотвращения потери информации в случае сбоя.

1.1.3. Требования к ПО и сетевым доступам

Платформа представляет собой набор микросервисов, запускаемых в контейнерах. Для работы потребуется установить инструмент контейнеризации Docker и надстройку над докером Docker-compose — локальный оркестратор, который позволяет запускать множество контейнеров одновременно и маршрутизировать потоки данных между ними.

Установка должна выполняться от имени пользователя, являющегося администратором системы (имеющего права root).

Требования к сетевым доступам

Для получения docker-образов требуется доступ к адресам:

- cr.yandex
- hub.docker.com

Если установка производится сотрудниками ПМТ, требуются доступ к следующим ресурсам:

- FTP cepsep Postmodern:
 - o ftp.pmtech.ru
- Репозитории системы на примере Ubuntu (скачивание и установка зависимостей необходимых для установки Docker):
 - o ru.archive.ubuntu.com
 - o security.ubuntu.com
- Репозиторий Docker (скачивание и установка Docker):
 - o download.docker.com
- Доступ к Github для установки Docker compose (скачивание и установка Docker compose):
 - o github.com
- Реестр образов (Docker Registry) на Яндекс-облаке (для скачивания dockerобразов с компонентами от ПМТ):
 - o cr.yandex

Требования к ПО

Перечень необходимых пакетов для запуска Платформы:

Пакет	Описание				
vim	Терминальный текстовый редактор				
jq	JSON-конвертер				
mc	Файловый менеджер с текстовым интерфейсом типа Norton Commander				
curl	Служебная программа командной строки, позволяющая				
	взаимодействовать с множеством различных серверов по множеству				
	различных протоколов с синтаксисом URL				
wget	Консольная программа для загрузки файлов по сети. Поддерживает				
	протоколы HTTP, FTP и HTTPS, а также поддерживает работу через				
	НТТР прокси-сервер				
cifs-utils	Утилиты для монтирования сетевых файловых систем CIFS				
ca-certificates	Пакет для обновления корневых сертификатов на Linux				
gnupg	Утилита для шифрования информации и создания электронных				
	цифровых подписей				
sshd	Серверный компонент, который позволяет обеспечить безопасный				
	удалённый доступ к системе с использованием протокола SSH (Secure				
	Shell)				
netcat	Утилита командной строки, которая читает и записывает данные через				
. 1	сетевые подключения, используя протоколы TCP или UDP				
telnet	Утилита, которая позволяет установить соединение и интерактивный				
	канал связи с любым портом удалённого устройства				
ping	Утилита командной строки, используемая для проверки доступности				
4	хоста в сети				
mtr	Инструмент сетевой диагностики командной строки, который				
*****	объединяет функциональность программ traceroute и ping				
nmap	Утилита с открытым исходным кодом для исследования сети и аудита безопасности				
tcpdump	Утилита для перехвата и анализа сетевых пакетов в Linux				
ansible	Система управления конфигурациями, написанная на языке				
ansioic	программирования				
Python	Применяется для автоматизации настройки и развёртывания				
1 yilloli	программного обеспечения				
	программиного обеспечения				

1.1.4. Логическая схема работы

Схема работы APPS

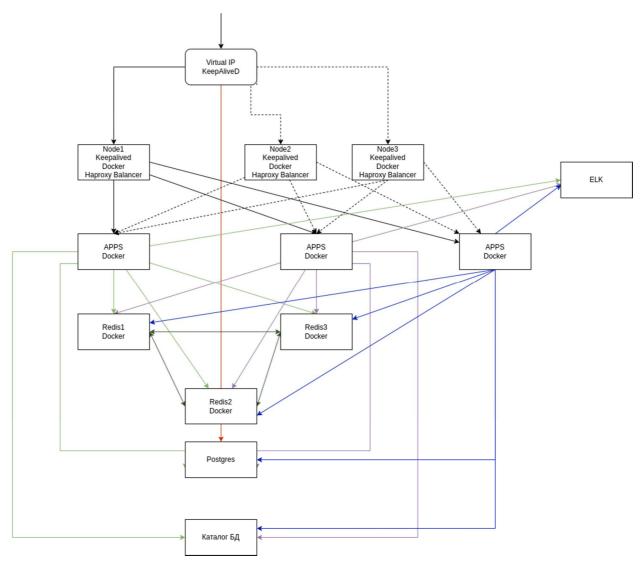


Рисунок 1. Схема работы APPS

Схема работы APPS в Docker

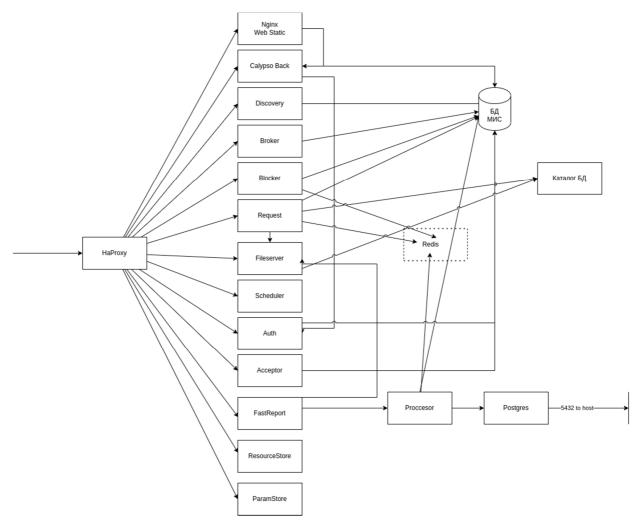


Рисунок 2. Схема работы A22S в D22k2r

1.1.5. Сетевая связность

Для работы платформы APPS поддерживаются два основных режима развертывания: односерверный и кластерный. Выбор режима зависит от требований к отказоустойчивости, масштабируемости и нагрузке на систему.

1. Режим одного сервера

В односерверном режиме все компоненты APPS, включая Redis, PostgreSQL и ELK, разворачиваются на одном физическом или виртуальном сервере. Этот вариант подходит для небольших организаций с ограниченным количеством пользователей и минимальными требованиями к отказоустойчивости.

Требования к сети

Ниже представлена таблица с описанием сетевых портов, используемых приложением APPS в односерверном режиме:

Приложение	Входящий порт	Исходящий адрес	Исходящий порт
APPS	18005/HTTP	Cepвep MSSQL	1433/TCP

Приложение	Входящий порт	Исходящий адрес	Исходящий порт
APPS	18443/HTTPS	Сервер каталога	445/TCP
		базы	
PostgreSQL	5432/TCP	_	_
Redis	6379/TCP	_	_
Filebeat	5048/TCP	Elasticsearch	9200/TCP
Kibana	5601/TCP	Elasticsearch	9200/TCP
APM-server	8200/TCP	Elasticsearch	9200/TCP

Примечание. Односерверный режим удобен для тестирования и для небольших рабочих сред, но не обеспечивает отказоустойчивость. При увеличении числа пользователей или нагрузки рекомендуется перейти на кластерную архитектуру.

2. Режим кластера

Кластерный режим развертывания APPS обеспечивает высокую доступность и масштабируемость системы. Для отказоустойчивости требуется минимум три сервера APPS, а также кластеры Redis и PostgreSQL (Patroni). Дополнительно потребуются два IPадреса для кластерных целей:

- Один IP-адрес для балансировщика приложений HAProxy (APPS).
- Один IP-адрес для балансировщика PostgreSQL Patroni.

Требования к сети

Ниже представлена таблица с описанием сетевых портов, используемых приложением APPS в кластерном режиме:

Приложение	Входящий порт	Исходящий адрес	Исходящий порт
APPS	18005/HTTP	Cepвep MSSQL	1433/TCP
	18443/HTTPS	Сервер каталога	445/TCP
		базы	
		Postges	5432/TCP
		Redis	6379/TCP
Haproxy balancer	8080/TCP	Apps (все ноды)	18005
apps			
	8405/TCP		
Postgres patroni	5432/TCP	Ноды Etc patroni	2379/TCP
		Ноды Etc patroni	2380/TCP
Etc patroni	2380/TCP	Ноды Etc patroni	2380/TCP
		(синхронизация	
		кластера)	
	2379/TCP		
Haproxy patroni	5000/TCP	Postgres patroni	5432/TCP
	5001/TCP		
Redis	6379/TCP		
Redis-sentinel	26379/TCP	Redis	6379/TCP
Filebeat	5048/TCP	Elasticsearch	9200/TCP
		Kibana	5432/TCP
Elasticsearch	6379/TCP		
Kibana	5601/TCP	Elasticsearch	9200/TCP
APM-server	8200/TCP	Elasticsearch	9200/TCP

1.2. Подготовка к запуску APPS

1.2.1. Установка Docker

Docker — это платформа с открытым исходным кодом для разработки, доставки и запуска приложений в изолированных контейнерах. Docker Compose — инструмент для определения и запуска многоконтейнерных приложений Docker с помощью YAML-файлов.

Docker поддерживается большинством современных операционных систем, включая Linux и Windows. Многие современные операционные системы уже включают Docker в свой состав.

Для установки Docker необходимо обратиться к документации вашей операционной системы.

Примечание. Установка должна выполняться от имени пользователя, являющегося администратором системы (имеющего права root).

В следующем разделе приведены примеры установки Docker на различные операционные системы.

Последние версии Docker

Если вам нужны последние версии Docker, рекомендуется использовать официальную инструкцию с сайта Docker для вашей операционной системы: Install Docker.

Настройка пользователя для работы с Docker

После установки Docker необходимо добавить пользователя, от имени которого вы планируете запускать приложения, в группу docker. Это позволит избежать необходимости использования команды sudo каждый раз при работе с Docker.

Добавьте пользователя в группу docker с помощью следующей команды, заменив имя_пользователя на имя вашего пользователя:

sudo usermod -aG docker имя пользователя

Перезапуск сессии

Для применения изменений необходимо начать новую сессию для данного пользователя.

Выполните выход из текущей сессии с помощью команды:

exit

Затем залогиньтесь снова.

Проверка принадлежности к группе docker

Чтобы проверить, что пользователь был успешно добавлен в группу docker, выполните команду:

В выводе команды должно быть указано, что пользователь принадлежит к группе docker. Пример вывода:

uid=1000(all) gid=1000(all) группы=1000(all),964(docker)

Если группа docker присутствует в списке, настройка завершена успешно.

1.2.2. Примеры установки Docker на разные системы

ВНИМАНИЕ! В данном разделе описаны примеры установки Docker и Docker Compose на популярные Linux-дистрибутивы, но если вам нужны последние версии Docker, рекомендуется использовать официальную инструкцию с сайта Docker для вашей операционной системы.

Установка Docker и Docker Compose

Ha Debian/Ubuntu

Подготовка системы:

\$ sudo apt update && sudo apt upgrade -y

Установка необходимых пакетов:

\$ sudo apt install -y apt-transport-https ca-certificates curl software-propertiescommon gnupg lsb-release

Добавление GPG-ключа Docker:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

Добавление репозитория Docker:

echo "deb [arch=\$(dpkg --print-architecture) signed-by=/usr/share/keyrings/dockerarchive-

keyring.gpg] https://download.docker.com/linux/ubuntu \$(lsb_release -cs)

stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

Установка Docker:

sudo apt update; sudo apt install -y docker-ce docker-ce-cli containerd.io

Установка Docker Compose:

sudo curl -L

"https://github.com/docker/compose/releases/download/v2.20.2/dockercompose-\$ (

uname -s) - \$ (uname -m)'' -o /usr/local/bin/docker-compose; sudo chmod + x

/usr/local/bin/docker-compose

Добавление текущего пользователя в группу docker:

Ha RedOS

Подготовка системы: sudo yum update -y Установка Docker: sudo yum install -y yum-utils device-mapper-persistent-data lvm2 sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/dockerce. repo sudo yum install -y docker-ce docker-ce-cli containerd.io Запуск службы Docker: sudo systemctl start docker sudo systemctl enable docker Установка Docker Compose: sudo curl **-**L "https://github.com/docker/compose/releases/download/v2.20.2/dockercompose-\$(uname -s)-\$(uname -m)" -o /usr/local/bin/docker-compose *sudo chmod* +*x* /*usr*/*local*/*bin*/*docker*-*compose* Добавление текущего пользователя в группу docker: sudo usermod -aG docker \$USER newgrp docker

Ha Astra Linux

ВНИМАНИЕ! В Astra Linux рекомендуется использовать официальные репозитории дистрибутива.

Полготовка системы:

sudo apt update && sudo apt upgrade -y

Установка Docker:

sudo apt install -y docker.io

Запуск службы Docker:

sudo systemctl start docker

sudo systemctl enable docker

Установка Docker Compose:

sudo curl -L
"https://github.com/docker/compose/releases/download/v2.20.2/dockercompose-\$(
 uname -s)-\$(uname -m)" -o /usr/local/bin/docker-compose
 sudo chmod +x /usr/local/bin/docker-compose

Добавление текущего пользователя в группу docker:
 sudo usermod -aG docker \$USER
 newgrp docker

Ha ALT Linux

Подготовка системы:

sudo apt-get update -a

Установка Docker:

sudo apt-get docker-engine

Запуск службы Docker:

sudo systemctl start docker

sudo systemctl enable docker

Установка Docker Compose:

sudo curl "https://github.com/docker/compose/releases/download/v2.20.2/dockercompose-\$(

-L

uname -s)-\$(uname -m)" -o /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

Добавление текущего пользователя в группу docker:

sudo groupadd docker

sudo usermod -aG docker \$USER

newgrp docker

Проверка установки

Для проверки успешности установки выполните следующие команды:

docker --version

docker-compose --version

Если версии отображаются корректно, установка прошла успешно.

1.3. Установка

1.3.1. Общие сведения об установке

Установить APPS можно двумя способами – online и offline.

Установка Online

Режим установки online требует наличие возможности скачать образы docker-контейнеров из сети интернет с адресов указанных в разделе 1.1.3 («Требования к ПО и сетевым доступам»).

Установка Offline

Режим установки offline не требует доступа к сети интернет, всё что нужно для работы уже заложено в инсталлятор. Данный режим обеспечивает высокую безопасность, но менее гибок, поскольку инсталлятор имеет только одну определенную версию. В этом случает отсутствует гибкость обновления и отката, нет высокой скорости загрузки.

1.3.2. Подключение сетевого каталога

Для работы службы fileservice требуется подключить каталог базы данных к серверу(ам) с APPS.

Простое подключение каталога можно произвести командой *mount* с передачей параметров *mount* //*uмя* сервер/папка /*moчкa*/монтирования -о параметры.

ВНИМАНИЕ! Требует предварительно установленного пакета cifs-utils.

Пример команды:

mount //server/share /mnt -o username=user

Данный вариант подключения подходит для разовых задач, так как не поддерживает автоматического переподключения в случае обрыва сети и других проблем подключения.

Для обхода данной проблемы следует использовать механизм монтирования с помощью **systemd**.

Создайте файл, имя которого содержит в себе путь, куда будет монтироваться сетевой каталог. Для примера (и по умолчанию) используется каталог /mnt для которого файл будет называться mnt.mount. Первый слеш игнорируется, все последующие заменяются дефисом (пример более длинного пути: /mnt/share - mnt-share.mnt):

sudo touch /etc/systemd/system/mnt.mount

Откройте файл на редактирование:

sudo vim /etc/systemd/system/mnt.mount

Перейдите в режим редактирования нажатием клавиши і и вставьте следующее содержимое:

[Unit]

```
Description=cifs mount script
          Requires=network-online.target
          After=network-online.service
       [Mount]
          What=//windows/share
          Where=/mnt
          Options=username=user,password=password,workgroup=domain name,iocharset
=utf8,rw,file m
          ode=0777,dir mode=0777,vers=2.0,rw
          Type=cifs
       [Install]
          WantedBy=multi-user.target
       Измените адрес расшаренной папки, имя пользователя, пароль и имя домена на
ваши и сохраните командами:
       ESC: wq enter
       По аналогии создайте файл для автомонтирования:
       sudo touch /etc/systemd/system/mnt.automount
       Откройте файл на редактирование:
       sudo vim /etc/systemd/system/mnt.automount
       Перейдите в режим редактирования нажатием клавиши і и вставьте следующее
содержимое:
       [Unit]
          Description=cifs mount script
          Requires=network-online.target
          After=network-online.service
       [Automount]
          Where=/mnt
```

Сохраните файл. Если вы не изменяли путь монтирования /mnt, то никакие изменения не требуются.

ESC: wq enter

[Install]

TimeoutIdleSec=10

WantedBy=multi-user.target

Теперь необходимо применить системные настройки командой:

sudo systemctl daemon-reload

Включите автозагрузку созданных настроек:

sudo systemctl enable mnt.mount

sudo systemctl enable mnt.automount

Запустите созданные настройки:

sudo systemctl start mnt.mount

sudo systemctl start mnt.automount

Для проверки нужно обратиться к каталогу /mnt командой:

ls /mnt

Если все настроено правильно, вы увидите листинг файлов из каталога.

1.3.3. Установка АРРЅ

Установка стека APPS для кластерного режима и режима одного сервера не отличается, отличия будут отражены в разделе «Запуск APPS». В целом, после установки Docker и проведения необходимых предварительных настроек, система готова к установке APPS.

Получение токена доступа

Для начала установки APPS необходимо запросить токен доступа к реестру образов Docker у технической поддержки. Токен действителен в течение нескольких часов.

Пример токена:

t1.9euelZrJio-KzprOjpmJlJeLzYrPkO3rnpWakJ2akc6Jy5iXz42Vy5yWx5Ll9Pd-YUZEe9bQyzL3fT3PhBERPnvW0Msy83n9euelZqMls6YjZfKkI_PnpeSzcyWy-_8zef1656VmsqOl5KQypianZePlJTHnIuY7_3F656VmoyWzpiNl8qQj8-el5LNzJbL.ns5AqMcTXsg4nVVpOxaDwHhmxA8lBYBqFPO8aG1CLwGrtttFruH476u6QnfhvU4YgDubseVcxwTi9g05kFNWBg

Аутентификация в реестре Docker

После получения токена выполните аутентификацию в реестре Docker командой, заменив < token > на ваш токен:

docker login cr.yandex -u iam -p <token>

Скачивание контейнера для установки APPS

Скачайте docker-контейнер для установки APPS с помощью следующей команды: docker pull cr.yandex/crp65nr1nr7bt8d4gb3d/init-apps:latest

Запуск процесса установки

По умолчанию APPS устанавливается в каталог /opt/PMT/APPS. Запустите процесс установки командой:

 $docker \quad run \quad --rm \quad -v \quad /opt/PMT:/opt/PMT \quad cr.yandex/crp65nr1nr7bt8d4gb3d/init-apps: latest$

Настройка прав доступа

После завершения установки необходимо исправить права доступа для созданного каталога. Выполните следующую команду:

sudo chown \${USER}:\${USER} /opt/PMT -R

Теперь установка APPS успешно завершена.

1.4. Запуск APPS

1.4.1. Общие сведения

Режим одного сервера (Standalone Mode)

Описание

Это самый простой режим работы системы — вся нагрузка обрабатывается одним узлом (сервером). Все данные хранятся и обрабатываются локально, без взаимодействия с другими узлами.

Преимущества:

- простота настройки
- минимальные требования к ресурсам
- легкость администрирования и отладки
- подходит для тестирования и небольших проектов

Недостатки:

- отсутствие отказоустойчивости: если сервер выйдет из строя, сервис станет
- недоступным
- ограниченная производительность
- отсутствие масштабируемости

Кластерный режим (Cluster Mode)

Описание

Кластер — это группа серверов, работающих вместе как единая система. Режим позволяет распределять нагрузку, обеспечивать отказоустойчивость и горизонтальное масштабирование.

Преимущества:

- высокая доступность (НА)
- балансировка нагрузки между узлами
- возможность масштабирования по мере роста нагрузки
- распределение данных и обработки задач
- защита от потери данных (при правильной настройке)

Недостатки:

- сложность настройки и управления
- увеличенные аппаратные/ресурсные затраты
- необходимость синхронизации между узлами
- более сложная диагностика и отладка

1.4.2. Запуск в режиме одного сервера

В данном разделе рассматривается вариант запуска на одном сервере, в качестве примера взят адрес 192.168.10.1 (при настройке во всех разделах его необходимо заменить на свой).

Предварительные требования:

- Установлен APPS.
- Выбран режим логирования.

Примечание. APPS умеет логировать в файлы, но мы рекомендуем использовать систему ELK для записи логов и трассировок.

Для начала настройки перейдите в каталог /opt/PMT/APPS, в который предварительно был установлен APPS:

cd /opt/PMT/APPS/

Настройка и конфигурация среды запуска производиться в файле .env.

На текущий момент файл **.env** содержит переменные, позволяющие по максимуму синхронно настроить все сервисы, с минимальными правками в других файлах.

В начале файла **.env** перечислены образы и теги образов из которых запускается APPS. Теги образов являются версией компонентов, которые используются в стеке APPS. Запросить текущие актуальные версии можно в технической поддержке <u>support@pmtech.ru</u>.

В блоке local scaling можно увеличить количество контейнеров, работающих под нагрузкой, данные блок требует понимания архитектуры стека APPS.

По умолчанию APPS настроен на порт 18005 и использование внутреннего Redis и Postgres. Откройте файл .env и проверьте следующие переменные:

Переменная	Описание				
port_web=18005	Порт, который использует APPS				
COMPOSE_PROFILES=db	По умолчанию используется встроенный redis и postgres –				
	отключить(убрать db). Если требуется использовать				
	внешние, необходимо внести изменения в файл csb.env.				

	Далее в дан	ной настройке	будут	исполь	зоваться п	рофили
	различных	компонентов	стека	APPS,	которые	онжом
	подключать	и отключать.				

В блоке Redis conf настраивается версия прочие настройки Redis, которая используется внутри стека APPS.

Переменная	Описание
redis_version=7.4	Версия Redis
port_redis=6379	Порт Redis
redis_pw=Str0ngP@ssw0rd	Пароль Redis

В блоке Pg conf настраивается версия прочие настройки Postgres, которая используется внутри стека APPS.

Переменная	Описание
pg_version=17.5-alpine	Версия образа Postgres
pg_user=sa	Пользователь Postgres
pg_password=password	Пароль Postgres

В блоке common settings настраиваются общие параметры для других сервисов

Переменная	Описание
workspace=APPS	Переменная указывающие окружение.
	Используется при кластеризации
ext ip=192.168.88.22	Внешний IP сервера

В файле csb.env содержатся основные настройки стека APPS. Откройте его на редактирование и измените следующие переменные:

Переменная	Описание
SQL_SERVER=	Имя сервера с базой данных default ¹
MSSQLSERVER\Instance	
DATABASE=name_of_databa	Имя базы данных default
se	
SQL_USER=user	Пользователь для подключения к серверу MSSQL с базой
	данных default
SQL_PASSWORD=password	Пользователь для подключения к серверу MSSQL с базой
	данных default
POSTGRES_CONNECTION=	По умолчанию используется встроенный Postgres,
postgres://\$pg_user:\$pg_passw	генерится на основе переменных из файла .env
ord@postgres:5432/postgres	
EXTERNAL_URL=http://\$ext	Внешний адрес сервиса APPS, генерится на основе
_ip:\$port_web/%service%	переменных из файла .env
LOG_TYPE=remote	Тип логирования remote/file. Для ELK используем remote,
	для логирования в файлы – file. Настоятельно
	рекомендуем использовать ELK, в противном случае
	траблшутиинг будет практически невозможен
LOG_HOST=192.168.10.4	Ip filebeat (если он используется)
LOG_PORT=5048	Порт filebeat (если он используется)
LOG_USERNAME=	Логин Kibana
LOG_PASSWORD=	Пароль Kibana
TELEMETRY_ACTIVE=true	Включение сервера трассировок

 $^{^{}m 1}$ Опционально поддерживается возможность подключения к БД под управлением MS-SQL

Переменная	Описание
TELEMETRY_SERVER_UR	Адрес сервиса АРМ
L=http://192.168.10.1:8200/	
TELEMETRY_PANEL_URL	Адрес Kibana
=http://192.168.10.1:5601/	
TELEMETRY_ENVIRONME	Параметр, показывающий, с какого сервера переданы
NT=apps1	логи. Задается автоматически на основании файла .env

Файл common.env содержит общий конфигурационный блок, передающийся всем службам, кроме discovery. Отредактируйте в нем следующие переменные:

Переменная	Описание						
EXTERNAL_URL=http://\$ext	Внешний адрес сервиса АРРЅ, формируется на						
_ip:\$port_web/%service%	основании переменных из файла .env						
TZ=Europe/Moscow	Часовой пояс (нужно изменить при необходимости)						
LINUX_ROOT="/mnt"	Точка монтирования каталога для хранения файлов в						
	Linux. Изменение данного значения требует понимания						
	работы стека APPS.						
WINDOWS_ROOT="\\\192.1	Сетевой путь к каталогу для хранения файлов						
68.10.10\\shared_folder"	(необходимо указывать с символами экранирования)						

Файл frs.env отвечает за настройки сервиса FastReport. Отредактируйте в нем следующие переменные:

Переменная	Описание						
EXTERNAL_URL=http://\$ext	Внешний	адрес	сервиса	В	APPS,	формируется	на
_ip:\$port_web/fastreport	основании переменных из файла .env						

Запустите APPS, выполнив следующую команду из текущей директории:

docker-compose up -d

Проверьте, что APPS работает:

docker-compose ps

Все сервисы должны быть в состоянии Up, как в данном примере (названия сервисов могут отличаться от приведенных в примере):

NAME IMAGE COMMAND SERVICE CREATED STATUS PORTS

testers 800 dev btk-acceptor-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest

"docker-entrypoint.s..." acceptor 9 days ago Up 3 days

testers 800 dev btk-auth-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest

"docker-entrypoint.s..." auth 9 days ago Up 3 days

testers 800 dev btk-blocker-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest

"docker-entrypoint.s..." blocker 9 days ago Up 3 days

testers 800 dev btk-broker-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest

"docker-entrypoint.s..." broker 9 days ago Up 3 days

testers 800 dev btk-cacheset-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest

"docker-entrypoint.s..." cacheset 9 days ago Up 3 days

```
testers 800 dev btk-calypso back-1
cr.yandex/crpb82v5uct0slolk11a/calypso back.test:latest "dockerentrypoint.
s..." calypso back 9 days ago Up 3 days
testers 800 dev btk-discovery-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." discovery 9 days ago Up 3 days (healthy)
testers 800 dev btk-fastreport-1 cr.yandex/crp65nr1nr7bt8d4gb3d/frs.test:latest
"dotnet PmtFastRepor..." fastreport 9 days ago Up 3 days (healthy)
testers 800 dev btk-fileserver-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." fileserver 9 days ago Up 3 days (healthy)
testers 800 dev btk-haproxy-1 cr.yandex/crp65nr1nr7bt8d4gb3d/haproxy:latest
"/docker-entrypoint...." haproxy 9 days ago Up 3 days
0.0.0.0:20443 > 443/tcp, ...: 20443 > 443/tcp, 0.0.0.0:20005 > 8080/tcp, ...: 20005 - 8080/tcp
>8080/tcp, 0.0.0.0:8444->8404/tcp, :::8444->8404/tcp
testers 800 dev btk-info-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." info 9 days ago Up 3 days
testers 800 dev btk-onlinequeue-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." onlinequeue 9 days ago Up 3 days
testers 800 dev btk-paramstore-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." paramstore 9 days ago Up 3 days
testers 800 dev btk-powermeter-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." powermeter 9 days ago Up 3 days
testers 800 dev btk-processor-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." processor 9 days ago Up 3 days
testers 800 dev btk-processor-2 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." processor 9 days ago Up 3 days
testers 800 dev btk-processor-3 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." processor 9 days ago Up 3 days
testers 800 dev btk-request-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." request 9 days ago Up 3 days (healthy)
testers 800 dev btk-resourcestore-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest
"docker-entrypoint.s..." resourcestore 9 days ago Up 3 days
testers 800 dev btk-rtfconverter-1
```

cr.yandex/crpb82v5uct0slolk11a/rtfconverter.test:latest "dotnet

RtfConverter..." rtfconverter 9 days ago Up 3 days

0.0.0.0:3015->3015/tcp, :::3015->3015/tcp

testers 800 dev btk-scheduler-1 cr.yandex/crp65nr1nr7bt8d4gb3d/csb2.test:latest

"docker-entrypoint.s..." scheduler 9 days ago Up 3 days

testers 800 dev btk-webserver-1

cr.yandex/crp65nr1nr7bt8d4gb3d/apps common nginx2.test:latest "/dockerentrypoint...."

webserver 9 days ago Up 3 days 80/tcp

testers 800 dev btk-xsltconverter-1

cr.yandex/crpb82v5uct0slolk11a/xsltconverter.main:latest "node

build/index.js..." xsltconverter 9 days ago Up 3 days

Эта проверка показывает, что сервисы, как инфраструктурные единицы, работают, теперь необходимо проверить логику работы.

Первым этапом надо проверить работу сервиса discovery, для этого нужно обратиться к нему с помощью команды *curl* по его реальному адресу (здесь адрес из примера). Ответ сервиса может появляться не сразу после старта, сервису некоторое время на инициализацию:

curl http://192.168.10.1:18005/discovery

В ответ вы должны получить:

discovery service is running

Это означает, что сервис запущен.

Далее требуется проверить, что сервис содержит рабочие данные:

curl http://192.168.10.1:18005/discovery/discover|jq|more

На выходе должны быть данные в JSON с настройками сервисов.

Последняя проверка — это обращение по адресу http://192.168.10.1:18005 из браузера. Вы должны увидеть окно логина (см. Рисунок 3). На данном этапе настройка APPS завершена.

2. Получение доступа к функциям Платформы

Для получения доступа к функциям Платформы необходимо открыть браузер и пройти авторизацию на сайте, определенном при развертывании Платформы:

1) Проверка возможности входа в программу осуществляется через веб-браузер:

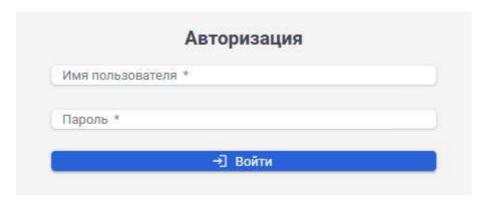


Рисунок 3. Окно логина

2) Вход в систему осуществляется по Имени пользователя (логину) и Паролю.

Для полноценного использования функций ПО «Информационная платформа «Pulsar-APPS+» рабочее место должно быть оборудовано доступом в интернет со скоростью не менее 1 Мбит/с, а также браузером на базе ядра Chromium версии не ниже 121.